阅读视图

苹果最新研究揭示: AI推理模型在复杂逻辑题面前“崩溃”与“放弃”


近日,苹果机器学习研究团队发布了一项引人关注的研究,指出当前所谓的大型推理模型(LRM,如 OpenAI、Anthropic、Google 等推出的模型)在面对难度不断提升的逻辑类问题时,会出现准确率骤降至 0、推理努力减少的现象,表明这些模型并没有真正具备稳定的“思考”能力。

研究背景与核心发现

实验设计:复杂性可控的逻辑谜题

研究团队采用了像 河流过渡 和 汉诺塔(Tower of Hanoi) 等经典谜题,通过可控手段系统增加问题复杂度,同时观察模型的“思考过程”和最终结果,避免传统数学或编程基准可能的数据泄露问题。

  • 苹果机器学习团队最新发布研究,指出当前大型推理模型(LRM)在面对高复杂度逻辑题时,准确率骤降至零,且推理过程中的计算量急剧下降,表现出“放弃思考”的现象。
  • 研究用经典谜题如河流过渡和汉诺塔,通过逐步增加难度控制变量,观察模型的表现和推理行为,规避了训练数据泄露的影响。
  • 结果显示,低复杂度时普通大语言模型LLM表现更好,中等难度下推理模型依赖“链式思考”提升表现,但高复杂度下所有模型准确率急剧崩溃。

模型推理能力的“崩溃”与“偷懒”

  1. 在复杂度临界点,模型的有效 token 使用量明显下降,表明模型在完成部分步骤后“停止推理”。在问题复杂度接近崩溃阈值时,这些模型伴随着有效 tokens 使用量骤降(即前几步还在思考,後面却“偷懒”了),表现出类似“放弃继续解题”的行为 。
  2. 即使研究者直接给出解题算法,模型仍无法有效利用,说明其并非真正理解算法逻辑。为了验证模型是否真无法理解算法,研究者在汉诺塔问题中提供了解题算法,但这些模型依然无法提升准确率,表明它们并不能用“听懂并执行算法”的思维方式,而是纯粹靠训练数据中的“模式匹配” 。

研究实验示意表

复杂度等级 模型类型 表现趋势 备注
普通大语言模型 准确率较好 推理模型表现一般
推理模型(含链式思考) 准确率提升 链式思考开始有效
所有模型 准确率急剧下降至0 模型推理“崩溃”并“放弃”

专家观点与行业影响

  • Gary Marcus:该研究“毁灭性”,打破了大语言模型快速通向通用人工智能的幻想。
  • Andrew Rogoyski:当前推理模型已遇瓶颈,现有方法或进入“死胡同”。

苹果的AI发展战略解读

  • 此次研究发布正值 WWDC 2025 前夕,体现苹果强调“设备端效率”和“实际应用价值”,反对盲目追求模型规模和复杂度。
  • 苹果去年推出的“Apple Intelligence”基于 ChatGPT 技术,但表现平平,此次研究进一步证明稳扎稳打才是长远之计。

未来方向与思考

  • 建立无数据泄露风险的逻辑谜题评测基准,避免传统 benchmark 偏差。评估基准的重塑:苹果强调使用无训练数据泄露、谁都无法“抄答案”的可控逻辑谜题来测试 AI,以避免传统 benchmark 的偏差。
  • 引入符号逻辑和神经符号混合技术,突破纯统计学习的限制。融合思维范式:当前 LLM 的“链式思考”是统计学习,并不是真正的推理。未来可能引入 符号逻辑、神经符号混合 等技术路径。
  • 结合专用推理子系统,提升模型对复杂算法的理解与执行能力。专用推理系统搭配神经网络:苹果研究者曾指出,搭配专门的数学/推理子系统能弥补大语言模型的机制性思维不足。

总结

  • 链式思考并不等于真正的思考。当前推理模型在复杂问题面前容易“崩溃”和“放弃”。
  • 未来AI发展需要超越纯数据驱动的模式匹配,向可解释、可操作的逻辑机制进化。
  • 苹果此次研究为业界敲响警钟,也明确了其在AI道路上的稳健路线。

相关引用示例代码(伪代码展示算法示意)

以下是汉诺依塔(Hanoi)的递归算法:

function solveTowerOfHanoi(n, from, to, via) {
  if (n == 0) return;
  solveTowerOfHanoi(n-1, from, via, to);
  moveDisk(from, to);
  solveTowerOfHanoi(n-1, via, to, from);
}

评论

缺乏物理世界的规律认知。

Meta的那个scientist一直说现在的LLM不能理解物理世界,所欲AGI肯定不是llm。

其实你想想ai的底层逻辑是建立在token上的就很反直觉。莫拉维克悖论。

when it scales.. 会出现 智能”涌现”的现像,就是一个黑箱。

脑科学,涌现。其实想想人脑真挺厉害的,而且人脑是那么一丁点大的基因表达出来的一个器官。每个正常成年人都可以精确控制自己的肢体动作,例如抓取杯子喝水啥的。但是机器人确需要精准的算法设计和大量训练,也许正确的道路是战锤里面的湿件,血肉苦弱,机械飞升。

lecun说的没问题 目前的llm就还是统计模型 物理世界数据太少了所以无法理解。

也有人质疑这个论文,说不是推理不出来,是token限制。数据太少了无法大量训练。它论文里有一块,说模型在不同puzzle中的表现不一致,可能跟训练数据中puzzle在网络上的曝光度有关。但实际上论文里没提供训练数据分析或者数据增强实验这种证据,只是单纯的假设了一下。我感觉有点不严谨。

脑科学和ai有很多内联。脑科学没有完全研究明白之前也可以从自上而下的角度来逼近。就像海马体的空间导航功能来启发类脑slam。虽然内部神经元的连接细节还不明确。人脑用很小的物理世界数据就能训练完成。

人脑带宽就10bit,但这是真推理,人脑做决策,计算量很小,但是每秒能处理很多大量的工作。我的脑子这么屌,为什么一个月才值 3000。

但是人脑有预训练权重啊。刚生下来的小孩就已经有很多牛逼的功能了。也对。是不是说明,训练需要几百万年,做推理的时候计算量很小,利好边缘AI部署。这个就是脉冲神经网络的一个应用方向。

人类有集体潜意识 是训练几百万年 通过遗传留下来的weight。

脉冲很稀疏,虽然也还只是特别粗糙的模拟,但是也有一些应用价值。

计算机就是靠易经发明的 所以得回到道教里面去找灵感怎么搞AI。

参考文献

新闻/实事/经济

人工智能 / Artificial Intelligence

本文一共 1899 个汉字, 你数一下对不对.
苹果最新研究揭示: AI推理模型在复杂逻辑题面前“崩溃”与“放弃”. (AMP 移动加速版本)

扫描二维码,分享本文到微信朋友圈
75a5a60b9cac61e5c8c71a96e17f2d9c 苹果最新研究揭示: AI推理模型在复杂逻辑题面前“崩溃”与“放弃” 人工智能 (AI) 新闻 科技 资讯
The post 苹果最新研究揭示: AI推理模型在复杂逻辑题面前“崩溃”与“放弃” first appeared on 小赖子的英国生活和资讯.

相关文章:

  1. 按揭贷款(房贷,车贷) 每月还贷计算器 去年给银行借了17万英镑 买了20万7500英镑的房子, 25年还清. 前2年是定率 Fix Rate 的合同 (年利率2.49%). 每个月大概是还 700多英镑. 有很多种还贷的计算方式, 定率/每月固定 是比较常用的. 简单来说就是 每个月交的钱是...
  2. 智能手机 HTC One M9 使用测评 虽然我对手机要求不高, 远远没有像追求VPS服务器一样, 但是怎么算来两年内换了四个手机, 先是三星 S4 用了一年多, 然后 Nokia Lumia 635 Windows Phone, 后来又是 BLU, 半年多前换了...
  3. 同一台服务器上多个WORDPRESS站点的一些设置可以移出去 我自从把所有网站都挪到一处VPS服务器上 就发现很多事情省事很多 可以同时管理多个网站 包括 WORDPRESS博客. 比如我有四个WORDPRESS博客 然后我就把通用的一些资料给移出去 移到 HTTP或者HTTPS都不能直接访问的文件夹里这样就更安全许多. 文件 wp-conn.php 存储了 相同的数据库资料. 1 2...
  4. 比特币最近波动有点大: 一天牛市一天熊 比特币10万美金以内都是最后上车的机会! 比特币近期的价格波动可以归因于多个关键因素,包括地缘政治动态、监管变化以及加密行业内的重大安全事件。其中一个主要影响因素是美国前总统唐纳德·特朗普对乌克兰和加密货币监管的立场变化。据报道,特朗普再次当选,他可能会推动减少美国对乌克兰的支持,这可能会影响全球金融市场和风险偏好。同时,特朗普正在将自己塑造为亲加密货币的候选人,表示有意让美国成为一个更加友好的加密货币环境。这一立场引发了市场对监管政策可能发生变化的猜测,导致市场情绪在乐观和不确定性之间波动。 特朗普对俄乌战争的态度 美国第43届总统唐纳德·特朗普已经在2025年1月当选并正式上任(第二次),那么他的政策可能会对比特币价格的波动产生更加直接和显著的影响。他政府对乌克兰和加密货币监管的立场已经不再是猜测,而是正在实际塑造市场的关键力量。 特朗普(Donald Trump)减少美国对乌克兰的支持,全球投资者可能会预期地缘政治稳定性发生变化,从而增加对比特币作为避险资产的需求。同时,他的亲加密货币立场可能正在推动市场的乐观情绪。如果他的政府推出有利于加密行业的监管政策,例如明确的合规指南或减少监管审查,可能会吸引更多机构投资者进入市场,并促进更广泛的加密货币采用。然而,政策的快速变化也可能导致短期市场剧烈波动,因为市场需要时间来消化新的政策动向。 朝鲜黑客盗取Bybit交易所15亿美元的ETH 另一个显著影响比特币价格的事件是近期涉及朝鲜黑客组织“Lazarus”的15亿美元以太坊被盗案件。据报道,Bybit交易所(全球第二)这些被盗的ETH已经被清洗,此次大规模黑客攻击引发了人们对加密行业安全性的担忧。此类安全事件不仅会削弱投资者信心,还可能引发更严格的监管审查,导致短期市场动荡。此外,被盗资金的大规模流动和出售可能对市场流动性造成冲击,进一步加大价格波动。随着这些事件的持续发酵,比特币价格正受到政治决策、监管预期以及安全挑战等多重因素的影响。 与此同时,与朝鲜黑客组织 Lazarus 相关的 15 亿美元以太坊被盗事件仍在影响加密市场。由于这些被盗 ETH 已被清洗,人们对加密行业安全漏洞的担忧持续存在,同时也可能引发更严格的监管审查。政治、监管和安全等多重因素交织在一起,共同导致了比特币近期的剧烈价格波动。...
  5. 老婆的配偶签证被拒 郁闷死了, 601镑签证费打水漂,一去不回!费钱费力. 去年12月份我请了律师拿到了永居.老婆是T1G签证的陪工签 (DEPENDENT VISA) 2016年4月份到期. 然后我就想说得趁早把她的签证转成配偶签(SPOUSE)这样她就可以尽快走五年永居的路线. 今天收到拒签信,原因是我没有提供 有工资进帐的那份银行帐单,我提供了我和我老婆的联名帐户, 但是工资并不是直接打到这个帐单上的.所以就这一点被拒了.完全不给解释,不给补材料的机会.601镑就这样再见了. 英国的签证寄出之后是先由另一个部门先收费, 收完费才正式审理,而且不管结果如何是不退钱的.后悔没让律师弄,也不至于到现在浪费这么多时间和金钱,签证还没过.由于原签证还没到期,所以还不能上述.估计只能等搬完家后年底请律师搞定这事. 真是郁闷, 600镑, 我可以再买一个IPHONE6,或者给我的新买的车换四个轮胎....
  6. 公司给配了台高配DELL笔记本 早上例会结束的时候我顺便说了一句 我的笔记本有点慢, 当时我并不知道我的经理远程用电话也参加会议了(他全程在听), senior staff SE 对着电话说, “peter, you hear that? btw, my disks are...
  7. 花钱让人换汽车钥匙的电池真是个智商税 今天想不到我这么聪明的人也被人狠狠的收了一把智商税. 今天被收智商税了, 去 Tesco 换车钥匙的电池. . 才发现如此的简单, 那人直接2分钟搞定2个, 然后收了我25英镑. . 服了. . 我还以为很复杂…… 网友说 “1....
  8. Microbit 编程: 简易人工智能让电脑玩游戏 上一周, 我们在 Microbit 上编写了第一个游戏: 吃苹果. 我两儿子很喜欢玩, 他们互相比着最高分, 大概极限是35分. 吃苹果的游戏代码和Microbit模拟器: https://makecode.microbit.org/_DV93uT7i0WuK 可能有极限吗? 即使我们做出足够迅速的反应并且没有犯错, 会出现怎么样也无法抓住苹果的情况吗? 人工智能简介-让计算机玩游戏 AI被称为人工智能,...
  •  

豆包的双重水印

字节不仅没活,而且玩不起。

玩不起也就算了,还搞出笑话。


(自上篇文章写完之后,这最近十多天我都没怎么打开过豆包,所以这些事情的具体发生日期不确定)

(PS:文章写得太慢,现在豆包又把预览图水印移动到左上角去了)

豆包开始封杀无水印图片获取方法

之前最基本的方法就是,直接从网页端获取无水印的预览图。因为预览图与下载图的清晰度是相同的,而且下载图是带水印的,所以没必要再去点击下载。

之所以有这么个办法,即 为什么预览图不带水印但是下载图带水印

…… 谁特么能知道字节的员工是怎么想的

然后大约5月28日左右,网上开始有视频说豆包开始在预览图上加水印了。

这就导致包括我之前文章《从豆包下载无水印图片》在内的下载预览图方式获取无水印图片的方法失效了。

screenshot_on_b85m_by_flameshot_at_2025-06-02_16-53-15


豆包的二次水印

这玩意就搞笑。

首先预览图带水印,然后下载图也带水印。

然然后 …… 预览图水印与下载图水印还不一样。

screenshot_on_b85m_by_flameshot_at_2025-06-02_17-09-12

screenshot_on_b85m_by_flameshot_at_2025-06-02_17-09-47

一张图打两个版本的水印,CPU随便用,存储空间不要钱,带宽流量狠劲浪。


豆包视频的双重水印

豆包当然在服务器端是有保存无水印,看上一条你就能知道。

觉得一张图片额外存两份不同水印的副本就足够傻了?

来看 双重水印

https://www.bilibili.com/video/BV1PG7KznEi4/

不方便点开看视频的或者看不懂怎么回事的,我解释一下:

豆包支持将 生成的图片 直接用于 生成视频 。这种功能设定在正常逻辑上很正确,是为了 免去用户手动下载图片,然后再重新上传图片到网站,浪费资源

但是傻屌字节一开始就做歪了。点击 「生成视频」 的时候,是把 预览图 下载到本地,然后转码成BASE64。然后在 「生成视频-发送」 时,却又并不提交浏览器缓存的图片或BASE64,而是直接提交了一堆ID和Token,但是这些ID和Token引用的,是服务器端保存的 带水印的预览图 ,所以最后生成的视频文件,同时带有 预览图水印视频水印

如果梳理一下他们这奇葩行为的流程的话:

  1. 二次下载预览图(会调用浏览器缓存,不浪费带宽,可以理解,但是干啥用?)
  2. 把预览图转码成BASE64(干啥用?)
  3. 提交ID和Token而不是图片(正确操作)
  4. 调用的是服务器端保存的带水印的预览图(有病啊)
  5. 在生成的视频上打水印(在屎上拉屎)

screenshot_7734397622634242-20250602174504

他这玩意,在16:9和4:3以及1:1横向视频上问题还不严重,毕竟两个水印叠加在一起了。但是在9:16纵向视频上,以及21:9宽屏视频上,水印不论位置还是大小都不一样,很显眼的俩水印。

比例 1:1

screenshot_vlcsnap-2025-06-02-22h11m55s457

比例 4:3

screenshot_vlcsnap-2025-06-02-17h48m49s313

比例 16:9

screenshot_vlcsnap-2025-06-02-22h06m34s620

比例 21:9

screenshot_vlcsnap-2025-06-03-00h55m04s645

比例 9:16

screenshot_vlcsnap-2025-06-03-00h54m30s411

这里也有一个视频可以看每个长宽比不同的视频,他们水印都打到了什么地方。

https://www.bilibili.com/video/BV1b27Qz9ENE/

一个做短视频起家的公司,甚至都不关心竖屏视频的输出结果。

PS1:豆包现在线上输出的视频分辨率小于720p,现在是一个很奇葩的数值,16:9 和 9:16 视频的分辨率是 1248×704 。

screenshot_on_b85m_by_flameshot_at_2025-06-03_00-15-25

(这破公司怎么想的)

PS2:假如你 在页面重新下载完预览图转码成BASE64添加到首帧图之前 ,输入完文字(一般是复制粘贴)直接敲回车键提交的话,那么将会以 无首帧图 的场景下,进入 文字生成视频 的流程。还挺滑稽的,以至于我一直以为第五步是要从页面上传一遍图片。

screenshot_on_b85m_by_flameshot_at_2025-06-03_01-01-24


豆包扩图的预览图是个超低分辨率的jpeg

如果使用扩图功能之后刷新页面,那么回到页面时,点开缩略图展开的预览图片,不是真正的预览图片,而是左侧的那个jpeg格式缩略图。

screenshot_on_b85m_by_flameshot_at_2025-06-02_18-26-32

改了一个功能,崩了一堆功能。

只能说IT行业大公司才是程序员平均水平的具象化,刻板印象真的表现得淋漓尽致。


以后如何获取无水印图片

除非豆包重新放开渠道,否则想要直接获取无水印图片是比较困难了。

当然,这个程度的阻碍根本难不倒勤劳智慧的中国人。网上已经有一些办法去掉豆包的这个新水印了。

有水印:

screenshot_7875414228876802-20250603160359-1506-watermark

无水印:

screenshot_7875414228876802-20250603160359-1506

对比:

screenshot_on_b85m_by_flameshot_at_2025-06-03_16-09-07

screenshot_on_b85m_by_flameshot_at_2025-06-03_16-06-56

其他例子:

screenshot_7733561051765506-20250602181125

screenshot_7728629145285122-20250602215251

screenshot_7732002315140098

只不过目前想不出来如何用 userscript 一键搞定这个有点复杂的操作。

其实根本无所谓,现在豆包的输出结果,只要是接触过豆包AI的,一眼就能看出来是豆包3.0的视觉模型,

screenshot_on_b85m_by_flameshot_at_2025-06-02_18-38-56

我可不会觉得字节是担心有人用免费的豆包套一层 人皮 在外边卖服务吧 …… 不过考虑到字节旗下的用户,还真说不准。来个闲鱼修图业务,套人皮用免费AI收费改图。


有人说防污染

也有人说这玩意是为了防止AI输出结果对AI训练的自行污染……呵呵,还能有人觉得AI现在不会自行污染了?

至少我是会在图片上额外再打一个水印的,但是我打的水印AI能不能识别到都不一定。


结尾

我之前做了一个无水印下载脚本,当时遇到了不少问题,比如跨域图片下载,下载图片的命名。

本身豆包页面就有不计其数的逻辑错误,我都懒得吐嘈了。

你要知道上个月的时候字节旗下的那个收费的即梦AI还做不到 下载视频 ,点开下载视频按钮直接打开视频,需要自己再另存为到本地。

现在豆包为了封杀直接下载无水印预览图的方式,搞烂了一堆其他的功能。你说字节是杀敌一千自损八百吧,其实字节根本就没有高端用户,顶多算是杀了自己一千八而已。

即梦那边貌似也在收紧免费业务。

爱咋地咋地吧,最多就是少了一个玩具而已。

(PS:文章写得太慢,现在豆包又把预览图水印移动到左上角去了)

The post 豆包的双重水印 first appeared on 石樱灯笼博客.
  •  

关于“人社发布19个新职业”的一些思考

关于对拟发布生物工程技术人员等职业信息进行公示的公告 (mohrss.gov.cn)

人力资源与社会保障部发布19个新职业

5月24日,人力资源和社会保障部发布了19个新职业,其中网络主播、用户增长运营师、生成式人工智能系统应用员这几个新职业值得关注,也反映了一些大环境的现状,对此也谈谈自己的思考:

一、网络主播、用户增长运营师:

对于从事互联网行业的都知道,其实这两个职业也称不上新职业了,已经出现很多年了,尤其是用户增长运营,早在10年前就有了,比如,从事SEO/SEM、社群运营、公众号运营等等,这些互联网公司的运营岗,都带有用户增长的职责。而网络主播也是早在斗鱼、荔枝FM、喜马拉雅这些平台出现的时候,就有了主播这个角色。

但这次发布出来,我认为既是一种官方认可,更是说明网络主播、用户增长运营在各行各业中都已经很普遍、很标配了,不再只是互联网公司所特有的职位。几乎所有的企业,都已经把抖音、快手、视频号这几大短视频直播平台视为获客、销售产品的重要阵地。而一些传统企业提到的数字化转型,其中营销数字化、品牌数字化,第一步就是短视频、直播。

二、生成式人工智能系统应用员:

这个职业确实比较新,在出现在这批新职业中,我还是有点惊讶的。相比其他新职业,确实快了不少,这也说明生成式人工智能的应用推行速度,就如同GPT自身的迭代速度一样,实在是太快了。

我们公司已经把大模型应用到了教学服务工具中,确实提升了服务的效率和体验。

很多人担心AI的发展会淘汰很多岗位,我认为这个担心没有意义,科学技术的发展是势不可挡的,AI淘汰的是那些不会把AI作为辅助提升工作效率的人,就如同你赤手空拳怎么可能打得过手持冲锋枪的人。

看来啊,我还需要进一步加深对AIGC这类大模型的理解和应用,现在总觉得大模型还不够成熟,试想,一旦成熟了,可能就错失了红利期。我们也会尽快推出AI赋能农业人的培训课程,拭目以待。

附录:19个新职业的名称和岗位定义如下(S表示数字职业,L表示绿色职业)

(一)生物工程技术人员
定义:从事生物工程技术研究、工艺过程和工程设计、产品技术研究开发、质量检测、相关技术指导及其产业化及科学成果转化的工程技术人员。

(二)口腔卫生技师
定义:从事口腔疾病预防、卫生保健、疾病辅助诊疗等口腔卫生服务工作的专业人员。

(三)网络安全等级保护测评师 S
定义:使用相关技术、方法和工具,依据国家网络安全等级保护相关法律法规和技术标准,对网络系统和数据开展安全技术检测评估和安全管理体系审核的人员。

(四)云网智能运维员 S
定义:从事云网相关服务系统运维,运用云计算和智能网络技术及工具,实现云网日常管理、运行维护、性能调优、故障排除、应急处置等工作的人员。

(五)生成式人工智能系统应用员 S
定义:运用生成式人工智能技术及工具,从事生成式人工智能系统设计、调用、训练、优化、维护管理等工作的人员。

(六)工业互联网运维员 S
定义:使用软件、专用设备、检测仪器及工具,对工业互联网系统进行网络互联互通、数据采集处理、标识解析应用、平台应用优化、系统安全维护的人员。

(七)智能网联汽车测试员 S
定义:使用工具、量具、检测仪器及设备,对智能网联汽车及其相关零部件进行功能验证和测试的人员。

(八)有色金属现货交易员
定义:从事有色金属现货调研、收购、销售、保值、风控、储运、交割等交易活动,提供对应的业务操作、贸易咨询服务的人员。

(九)用户增长运营师 S
定义:运用数字化工具,从事企业或机构用户增长、管理及运营等工作的人员。

(十)布展搭建师
定义:从事会展活动场地的搭建和布置,以及负责会展活动结束后的拆除和清理工作的人员。

(十一)文创产品策划运营师
定义:从事文化创意产品的策划,结合市场需求设计具有文化元素的产品,对文创产品进行营销运营的人员。

(十二)储能电站运维管理员 L
定义:使用工具、量具、检测仪器及设备, 进行电化学、压缩空气、飞轮等储能单元或系统的数据采集、状态监测、运行维护及设备资料管理的人员。

(十三)电能质量管理员 L
定义:从事电力系统电能质量测试、监测、评估、治理以及管理电能质量设备,进行调试、维修、改造的人员。

(十四)版权经纪人
定义:从事版权交易、版权登记代理、版权贸易、版权价值评价等相关服务的人员。

(十五)网络主播 S
定义:在互联网上,从事音视频、图文信息等实时播出或交互服务的人员。

(十六)滑雪巡救员
定义:在滑雪场所,对滑雪者及设施设备进行安全巡查,并对伤者在医疗救治前实施救助的人员。

(十七)氢基直接还原炼铁工 L
定义:操作反应竖炉、加热器、工艺回路系统、二氧化碳脱除系统、装排料系统、涂覆系统、筒仓系统等设备,生产符合质量标准的氢基直接还原铁的人员。

(十八)智能制造系统运维员 S
定义:从事智能制造系统数据采集、状态监测、故障分析与诊断、预防性维护、保养作业和优化生产的人员。

(十九)智能网联汽车装调运维员 S
定义:使用专用设备、工具、仪器仪表,对智能网联汽车和路侧设备进行装配、调试、测试、联调、状态监测、运维等工作的人员。

  •  

Jevons悖论: Deepseek崛起为何最终推动Nvidia股价回升?


2025年2月,Deepseek——一家来自中国杭州的人工智能实验室——开源了一个能够比肩ChatGPT的AI模型,而其训练成本远低于当前行业标准。这一突破引发了市场震动,尤其是对GPU需求的预期发生了剧烈变化。投资者一度认为,随着AI训练成本的下降,对高性能GPU的需求可能会减少,从而导致Nvidia的股价暴跌。然而,仅仅几周后,Nvidia的股价就强势反弹,重新回到高点。

nvidia-microsoft-apple-amazon-google-stock-2025-jan-feb Jevons悖论: Deepseek崛起为何最终推动Nvidia股价回升? DeepSeek Nvidia 英伟达 人工智能 (AI) 经济学

美股:英伟达、微软、苹果、亚马逊、谷歌股价2025一二月

这种市场反应看似矛盾,实则可以用Jevons悖论(Jevons Paradox)来解释。

什么是Jevons悖论?

Jevons悖论由19世纪英国经济学家William Stanley Jevons提出,最早是针对煤炭消耗的观察:当蒸汽机技术进步提高了燃煤效率后,人们原以为煤炭消耗会减少,结果却适得其反——因为更高的效率让煤炭的使用成本下降,从而促进了更多行业和领域采用蒸汽机,最终煤炭消耗总量大幅增长。

同样的逻辑适用于AI和GPU市场:

训练成本下降 → AI更易普及

Deepseek的成功证明了AI训练可以以更低的成本完成,这意味着更多企业、创业公司甚至个人研究者可以负担得起大规模AI模型的训练和部署。

AI需求激增 → GPU需求扩大

低成本AI的普及不会减少GPU的需求,反而会催生更多的AI应用场景。例如,更多企业可能会投入人工智能/AI研发,个人开发者也可能利用更廉价的算力进行实验,从而推动GPU(计算机图形加速卡)需求增长。

推理需求大增 → 继续依赖高端GPU

除了模型训练,模型推理(Inference)仍然需要大量算力,尤其是面对全球范围内激增的AI应用需求,云计算平台、企业数据中心等仍然需要大量高端GPU支持高效推理。

Nvidia股价为何回升?

市场最初的恐慌源于对GPU需求减少的误判,但随着Deepseek的开源,人们很快意识到AI生态的整体扩张才是核心趋势:

  • AI变得更便宜 → 更多公司加入AI赛道 → 算力需求总量上升
  • AI的推理需求飙升,尤其是企业级和消费级市场扩展 → 高端GPU仍是核心基础设施
  • Nvidia继续保持AI硬件和CUDA软件生态的领先地位 → 仍是赢家

因此,Jevons悖论的作用下,Deepseek降低了AI训练成本,反而进一步刺激了AI行业的发展,最终推高了对GPU的需求,使Nvidia的股价重新回升。

结语:TLDR; Jevons悖论

Deepseek的开源AI让人们看到了一个低成本、高效率的AI未来,但Jevons悖论告诉我们,技术进步往往不会减少需求,反而会创造出更庞大的市场。对于Nvidia来说,AI的普及意味着更多企业和开发者将涌入这个领域,而这最终仍然需要强大的计算硬件支持。因此,短期的市场波动只是情绪化反应,而长期来看,AI的发展只会让算力需求持续攀升,Nvidia依旧是AI革命中的最大受益者之一。

经济学

本文一共 876 个汉字, 你数一下对不对.
Jevons悖论: Deepseek崛起为何最终推动Nvidia股价回升?. (AMP 移动加速版本)

扫描二维码,分享本文到微信朋友圈
75a5a60b9cac61e5c8c71a96e17f2d9c Jevons悖论: Deepseek崛起为何最终推动Nvidia股价回升? DeepSeek Nvidia 英伟达 人工智能 (AI) 经济学
The post Jevons悖论: Deepseek崛起为何最终推动Nvidia股价回升? first appeared on 小赖子的英国生活和资讯.

相关文章:

  1. 按揭贷款(房贷,车贷) 每月还贷计算器 去年给银行借了17万英镑 买了20万7500英镑的房子, 25年还清. 前2年是定率 Fix Rate 的合同 (年利率2.49%). 每个月大概是还 700多英镑. 有很多种还贷的计算方式, 定率/每月固定 是比较常用的. 简单来说就是 每个月交的钱是...
  2. 智能手机 HTC One M9 使用测评 虽然我对手机要求不高, 远远没有像追求VPS服务器一样, 但是怎么算来两年内换了四个手机, 先是三星 S4 用了一年多, 然后 Nokia Lumia 635 Windows Phone, 后来又是 BLU, 半年多前换了...
  3. 在英国给孩子换学校的经历: 孩子离开了村里的小学 由于搬了家, 孩子上学得提前半小时出门了, 因为早上堵, 也得开车半小时才能到. 之前在 Fen Drayton 村庄上小学, 早上8:45学校门开, 9点敲钟孩子排队依次进入教室, 我们由于在村里, 只需要提前5分钟出门和孩子一起走路就可以了. 现在一下子早上变得很匆忙, 得叫孩子起床, 做早饭,...
  4. 同一台服务器上多个WORDPRESS站点的一些设置可以移出去 我自从把所有网站都挪到一处VPS服务器上 就发现很多事情省事很多 可以同时管理多个网站 包括 WORDPRESS博客. 比如我有四个WORDPRESS博客 然后我就把通用的一些资料给移出去 移到 HTTP或者HTTPS都不能直接访问的文件夹里这样就更安全许多. 文件 wp-conn.php 存储了 相同的数据库资料. 1 2...
  5. 公司请的专业摄影师 公司来了新的CEO管理之后,很多事情都不一样了, 特别是一些公司对外形象的事情就特别的在意, 比如公司网站用上SSL.现在公司还有空闲的位置,请速来(钱多人不傻). 一月份出差回LUTON,刚好公司请来摄影师给高层管理照像放网站上的,于是我也凑了凑热闹(但是却还不够资格被放在公司网站上),不过没关系,放这里也差不多. 人到中年, 沧桑感强了些. 更新更新: 同事用他NB的单反给谢菲尔得办公室的人也拍了一组这样的照片.看起来很不错, 很专业,灯光,道具应有尽有.我已经用在了LINKEDIN页面上,立马高大上. 本文一共 230 个汉字, 你数一下对不对. 公司请的专业摄影师. (AMP...
  6. 面向猫猫编程 Cat Oriented Programming (Chessly/Pyro这一生持续更新) 家里有两只猫 Chessly/Pyro,想着找个地方记录它们的生活,最后决定还是写在这里的博客。猫的一生很短,差不多也就二十年。 Chessly(黑白猫)是我加入微软剑桥研究院MSRC第一个月带回家的,过了两三个月,又把Pyro(橘猫)也接回了家。两只猫的名字是孩子们取的:Chessly因为黑白的像棋盘,加上“ly”听起来像个女孩的名字;而Pyro的意思是一团火(烟火),充满活力。 刚开始的时候,Chessly特别喜欢待在我的工作区域。她有时候趴在键盘上或旁边,有时候藏在显示器后面。偶尔还会绕到我身边“咕咕”地撒娇,等着我去摸她。有时更干脆跑到我腿上,舒舒服服地躺着。 不过,现在它们俩的体型都大了很多,躺在桌上就会挡住屏幕,真是“面向猫猫编程”(Cat Oriented Programming)的极致体验。 记录生活的点滴,也是一种珍惜,毕竟这二十年,我们会一起走过。 2024年 2025年 Ring视频:两猫日常就是打闹,Chessly追上Pyro想舔他,在猫的世界里,地位高的才能舔地位低的。 我家猫现在越来越胖,很喜欢在我工作的时候躺在显示器钱,很影响我的工作,不过这时候我就是会休息一下摸摸她,就当放松一下了。 Pyro在窗边喝水,这是个小的煮饭锅,现在不用了,就给猫当喝水的碗。Pyro很胆小,经常看到我就跑。没法跑就咕咕叫。 Chessly很喜欢陪我工作,然后她很好厅的盯着屏幕上的鼠标光标,真怕她把屏幕抓坏了。 哥哥弹琴,弟弟唱歌,Chessly午睡,真是幸福啊,下辈子做只猫吧。...
  7. 力扣 Leetcode 的刷题利器: 在线调试器和自动代码提示完成 力扣代码调试器 Debugger 最近 leetcode 刷题网站出了一个在线调试器. 个人感觉非常好用. 因为我平时是用 IPAD+蓝牙键盘来刷题, 而在 ipad 上是没有集成的IDE的, 对于调试来说, 只能很原始的让函数退出一个值, 然后尝试不同的输入来发现问题. leetcode在线调试器的好处...
  8. 优化设计 个人主页 并且 PageSpeed Insights 双项 100分 坛子的个人主页 www.tanzhijun.com 不错 很适合个人主页的模板. 而且是手机友好. 于是我照着把 我的主页改了改. https://steakovercooked.com 并且做了几点修改: 0. 使用 google mod_pagespeed 把 JS,...
  •  

硅谷娇妻是怎么样的? 让四个大语言模型AI来告诉你


这几天微信视频号上刷到一个在美国美女UP主(程序媛)的视频,很搞笑,于是好奇的查了一下啥是硅谷娇妻。

silicon-valley-beauty 硅谷娇妻是怎么样的? 让四个大语言模型AI来告诉你 AIGC-图片 ChatGPT (OpenAI) Claude DeepSeek Google Gemini Grok (X.AI) 人工智能 (AI)

这个美女UP主/程序媛开辟了一条新赛道

听说,在硅谷,竞争激烈。华人之间比的是谁的Offer更高,谁的级别更高,谁的妻子更年轻(“娇妻”一词也常被提及)。而女性则比的是老公的职级、收入,甚至家庭的整体实力。这种内卷不仅体现在职场,还延伸到生活的方方面面。从学区房的选择到孩子的教育资源,再到投资理财,甚至是社交圈层,硅谷的华人圈总是充满着无形的较量。这种竞争有时让人充满动力,但有时也让人不堪重负,仿佛一刻松懈就会被时代的浪潮甩在身后。

“硅谷娇妻”是一个带有调侃或刻板印象的标签,通常指向在硅谷科技行业高薪人士(如程序员、高管等)的配偶或伴侣。


只要你够努力,你的老婆还在高考。
Share on X


硅谷娇妻:让四个大语言模型AI来告诉你

我这次问了四大语言模型LLM(Large Language Model):包括 ChatGPT、Google Gemini、Anthropic Claude、还有Grok 3。感觉Claude AI生成的抽像图最好,让人眼睛一亮。我还试了DeepSeek,只不过它没法直接生成图。

我还听说,硅谷的竞争异常激烈,以至于男程序员们很难在当地找到对象。许多人选择在国内找媳妇,然后迅速结婚、办理签证,将妻子接到国外。婚后,男方往往希望女方尽快怀孕、生子,成为家庭主妇,否则可能面临被更优秀的男性“拐走”的风险。毕竟,在硅谷,女性的“溢价”更高,选择更多,这一点真假难辨,但确实是一个广为流传的现象。

与此同时,也有不少女性在硅谷站稳脚跟,依靠自身能力进入科技行业,甚至反向选择伴侣。相比国内的传统婚姻模式,硅谷的婚恋市场充满了变量,既有精打细算的现实考量,也有跨文化的碰撞和融合。

ChatGPT眼中的硅谷娇妻

chatgpt-silicon-valley-young-wives 硅谷娇妻是怎么样的? 让四个大语言模型AI来告诉你 AIGC-图片 ChatGPT (OpenAI) Claude DeepSeek Google Gemini Grok (X.AI) 人工智能 (AI)

ChatGPT画的硅谷娇妻图一眼假,就是AI图

Google Gemini眼中的硅谷娇妻

gemini-silicon-valley-young-wives 硅谷娇妻是怎么样的? 让四个大语言模型AI来告诉你 AIGC-图片 ChatGPT (OpenAI) Claude DeepSeek Google Gemini Grok (X.AI) 人工智能 (AI)

Google Gemini的也还不错,但是“几张” = 一张。

Grok 3眼中的硅谷娇妻

Elon Musk老马说Grok 3是最聪明/Smartest的AI:

grok3-silicon-valley-young-wives 硅谷娇妻是怎么样的? 让四个大语言模型AI来告诉你 AIGC-图片 ChatGPT (OpenAI) Claude DeepSeek Google Gemini Grok (X.AI) 人工智能 (AI)

Grok 3 画出来的硅谷娇妻图还可以,中规中矩,四张图,很像Mid Jounery的风格,一次给4张。

Claude眼中的硅谷娇妻

Anthropic Claude AI确实与众不同:

claude-explains-young-silicon-valley-wives 硅谷娇妻是怎么样的? 让四个大语言模型AI来告诉你 AIGC-图片 ChatGPT (OpenAI) Claude DeepSeek Google Gemini Grok (X.AI) 人工智能 (AI)

Claude AI 用文字解释硅谷娇妻

silicon-valley-wives-by-claude-ai 硅谷娇妻是怎么样的? 让四个大语言模型AI来告诉你 AIGC-图片 ChatGPT (OpenAI) Claude DeepSeek Google Gemini Grok (X.AI) 人工智能 (AI)

Claude AI画的硅谷娇妻 Silicon Valley Young Wives 的答案最好玩,有点卡通有点抽象。

DeepSeek眼中的硅谷娇妻

Deepseek无法像其它AI模型可以直接画图,这一点有待改进。

硅谷娇妻是怎么样的?画几张人像
好的,用户问的是“硅谷娇妻是怎么样的?画几张人像”。首先,我需要理解“硅谷娇妻”这个词语的具体含义。这可能是指那些居住在硅谷,配偶在科技行业工作的女性,可能带有一定的刻板印象或社会标签。接下来,我要考虑用户的需求是什么,他们可能想通过画像了解这类女性的典型特征或者社会形象。

接下来,我需要分析用户可能的深层需求。用户可能对硅谷的生活方式、社会结构或者性别角色感兴趣,或者他们可能在寻找某种文化评论或讽刺的表现。也有可能用户想创作相关的内容,需要视觉参考。

然后,我需要考虑如何将“硅谷娇妻”转化为视觉形象。这可能包括她们的穿着、职业背景、日常活动、使用的科技产品等元素。例如,她们可能穿着休闲但高端的服装,携带科技产品,出现在咖啡店、科技公司附近等场景。

同时,要注意避免刻板印象,虽然用户可能希望看到典型的形象,但也要注意多样性和尊重。可能需要描绘不同年龄、种族和风格的女性,以展示硅谷的多元文化。

另外,用户提到“画几张人像”,可能需要不同的姿势、场景和风格。例如,一个可能在咖啡馆用笔记本电脑工作,另一个可能在参加科技会议,第三个可能在家庭环境中平衡工作与家庭。

还要考虑色彩和风格的选用,硅谷常与科技、创新相关,可以使用现代、简洁的设计,颜色可能偏向中性或科技感较强的蓝色、灰色等。

最后,需要确认用户是否需要具体的艺术风格指导,比如卡通、写实、插画风等,或者是否需要强调某些特定元素,如品牌标志、科技设备等。如果用户没有明确说明,可能需要提供多种风格的建议,或者询问更多细节以更好地满足需求。

“硅谷娇妻”是一个带有调侃或刻板印象的标签,通常指向在硅谷科技行业高薪人士(如程序员、高管等)的配偶或伴侣。这一群体的形象常被简化或符号化,以下是对其特点的概括及对应的虚拟人像描述(文字版):

人像1:科技极简风
外形:30岁左右女性,穿着Lululemon瑜伽裤、宽松羊绒衫,背环保帆布包。

场景:站在Palo Alto的Blue Bottle咖啡店外,手持燕麦拿铁,低头刷手机(屏幕显示投资App或名校家长群消息)。

细节:手腕戴Apple Watch,戒指叠戴(婚戒+Tiffany微笑项链),脚踩Allbirds运动鞋,背景是特斯拉Cybertruck。

人像2:精英教育妈妈
外形:亚裔女性,剪裁利落的Theory西装外套,内搭白色T恤,妆容淡雅。

场景:在私立学校门口接孩子,车内仪表盘显示自动驾驶模式开启,副驾放着斯坦福夏令营宣传单。

细节:手机正在Zoom会议(远程公益组织或创业项目),车后窗贴着“My Child is an Honor Student”贴纸。

人像3:跨界投资人
外形:金发白人女性,穿Everlane基础款高领毛衣,搭配珍珠耳钉,发型随意扎成低马尾。

场景:在Atherton豪宅后院,桌上摆着冷压果汁和《原则》《精益创业》书籍,笔记本电脑显示天使投资平台页面。

细节:背景可见太阳能板、特斯拉充电桩,墙角堆着儿童STEM玩具,暗示“兼顾家庭与事业”的人设。

标签化特征总结:
消费符号:健康轻食、环保品牌、科技产品堆叠身份认同。

社交属性:教育内卷、房产投资、隐性阶层竞争。

矛盾性:既标榜“独立女性”,又依赖配偶资源;追求极简生活,却深陷消费主义。

注意:这类形象本质是对某一群体的夸张概括,现实中硅谷家庭结构多元,应避免以偏概全。创作时可加入反讽或解构元素,平衡幽默与批判视角。

画几张硅谷娇妻人像图
好的,用户之前问过关于“硅谷娇妻”的定义和文字描述的人像,现在直接要求画出几张人像图。我需要考虑他们为什么需要图像,可能的用途是什么?可能是用于展示、教学,或者个人兴趣。用户可能没有绘画工具,或者希望得到一些设计上的指导。

用户之前的提问已经得到了详细的文字描述,现在需要视觉呈现。我需要确认用户是否具备绘画能力,或者是否需要推荐工具或方法。但根据问题,用户可能希望得到具体的绘图建议或步骤,或者生成图像的方法。

考虑到用户可能没有专业设计软件,我应该推荐一些易于使用的工具,比如Canva、Procreate,或者AI绘图工具如MidJourney。同时,可能需要提醒用户注意避免刻板印象,保持多样性,毕竟之前提到过避免以偏概全。

另外,用户可能需要一些风格上的建议,比如插画、现代简约风或幽默夸张风格,来更好地表现人物特点。需要详细说明每个形象的关键元素,确保用户能准确传达所需的特征,比如科技极简风中的特斯拉和Apple Watch,精英教育妈妈的斯坦福夏令营传单等。

还要注意版权问题,建议使用原创或免版税的素材。最后,可能需要总结设计时的注意事项,比如平衡幽默与真实,避免刻板印象,突出细节等,帮助用户在创作时保持敏感和尊重。

由于我无法直接生成图像,但我可以提供详细的视觉设计思路和元素参考,帮助你或设计师创作“硅谷娇妻”主题的人像插画。以下是具体分镜和风格建议:

风格选择建议
扁平插画风:用简洁色块、低饱和度配色(莫兰迪色系),突出科技感和中产审美。

幽默夸张元素:放大标志性符号(如巨型特斯拉车标、浮夸的斯坦福贴纸),增加反讽效果。

细节彩蛋:在画面角落隐藏硅谷文化梗(如“996咖啡杯”“IPO倒计时手机壳”)。

人像1:科技极简极繁主义者
关键元素:

服装:Lululemon瑜伽裤 + Patagonia抓绒外套 + Allbirds运动鞋。

道具:左手举着燕麦拿铁,右手滑动iPad(屏幕显示股票K线图)。

背景:Whole Foods超市入口,购物车里有有机蔬菜和一瓶$200小众护肤油。

细节:AirPods耳机半戴,Apple Watch表盘显示“站立时间不足警告”。

人像2:私校妈妈的多线程人生
关键元素:

场景:私立学校停车场,妈妈同时操作三台手机:

手机A:PTA(家长会)群讨论捐款盖新实验室。

手机B:房产中介发来的Atherton豪宅链接。

手机C:微信家长群吐槽“爬藤教练收费$500/小时”。

穿搭:Tory Burch托特包 + 梵克雅宝四叶草项链 + 谷歌园区访客牌。

背景彩蛋:车窗反射出她疲惫翻白眼的瞬间,车尾贴着“Baby on Board & IPO in Progress”。

人像3:生活博主与天使投资人
关键元素:

主画面:在自家智能厨房拍摄Vlog,标题《硅谷主妇的晨间流程:5点健身7点路演》。

道具:料理台上摆着Bulletproof防弹咖啡、代餐Soylent、VC名片(红杉/Andreessen Horowitz)。

隐藏冲突:镜框边缘露出没收拾的儿童玩具和扫地机器人故障提示。

服装:Glossier素颜妆 + Aritzia家居服,戴Oura健康监测戒指。

工具与实现方法
AI绘图提示词(适用于Midjourney/DALL·E):

例:A stylish Asian woman in Lululemon yoga pants, holding a Blue Bottle coffee cup and iPhone with stock app interface, Tesla Cybertruck in background, flat vector illustration, pastel colors –v 5.2

手绘/设计工具:

Procreate/Photoshop:用钢笔工具勾轮廓,叠加纹理纸质感。

Canva:利用“简约人物”模板修改配色和道具。

版权规避:避免直接使用品牌Logo,用抽象化设计(如水果替代Apple标志)。

注意事项
避免刻板印象:通过添加反转细节(如“娇妻” secretly coding),打破单一叙事。

文化敏感性:平衡讽刺与尊重,避免针对特定族裔(如亚裔虎妈标签)。

地域特征:加入硅谷地标(金门大桥彩蛋、101公路堵车场景)。

如果需要更具体的分镜或构图草稿,可以描述某个场景,我会进一步细化设计逻辑! 🎨

阿里的千问/Qwen2.5-Max 眼中的硅谷娇妻

Qwen2.5-Max和DeepSeek一样,无法像其它AI模型可以直接画图,这一点有待改进。

“硅谷娇妻”并不是一个具体的人物,而是一个泛指的概念,通常用来形容生活在硅谷地区、家庭条件优越的女性。这类形象可能带有一定的刻板印象,比如她们可能是科技公司高管的妻子、创业者、或者本身就是成功的职场女性。她们通常被描绘为时尚、独立、有学识、注重生活品质,并且对科技和创新文化有一定了解。

由于我无法直接绘制图像,但我可以用文字描述几种典型的“硅谷娇妻”形象,帮助你更好地理解这个概念。如果你需要画出来,可以参考以下描述:

形象1:科技精英型
外貌特征 :干练短发或优雅的波浪长发,穿着简约但高级的职业装(如剪裁得体的西装外套搭配高跟鞋),佩戴智能手表或最新款的苹果产品。
背景环境 :站在一家高科技公司的玻璃幕墙前,手里拿着一杯星巴克咖啡,旁边是一辆特斯拉Model 3。
表情神态 :自信而专注,似乎正在处理工作邮件或与团队讨论项目。
形象2:创业先锋型
外貌特征 :休闲中带点时尚感,比如穿一件宽松的针织毛衣搭配牛仔裤,脚踩一双运动鞋。背着一款设计师品牌的托特包,里面装着笔记本电脑和平板。
背景环境 :坐在一家充满工业风装修的咖啡馆里,桌上散落着商业计划书和一杯冷萃咖啡。窗外可以看到硅谷标志性的棕榈树。
表情神态 :略显疲惫但眼神坚定,仿佛刚刚结束一场重要的投资人会议。
形象3:家庭主妇型
外貌特征 :精致的妆容,柔顺的长发披肩,穿着轻奢风格的连衣裙,搭配珍珠耳环和名牌手袋。
背景环境 :在一处豪华别墅的花园中,周围是修剪整齐的草坪和盛开的玫瑰花丛。她正微笑着陪伴孩子玩耍,同时用手机查看最新的股市动态。
表情神态 :温柔又从容,展现出一种平衡事业与家庭的生活态度。
形象4:健身达人型
外貌特征 :身材匀称,穿着专业的瑜伽服或跑步装备,头戴棒球帽,手腕上戴着Fitbit或Apple Watch。
背景环境 :在阳光明媚的早晨,沿着硅谷的山间小路慢跑,远处隐约可见旧金山的金门大桥。
表情神态 :健康活力,脸上带着轻松愉悦的笑容。
这些形象只是基于刻板印象的艺术化描述,并不能代表所有硅谷女性的真实生活状态。事实上,硅谷的女性来自不同的背景,拥有各自独特的故事和个性。如果要将这些形象画出来,建议结合现代插画风格,比如扁平化设计、水彩渲染或写实素描,以突出人物的特点和氛围感。

希望这些描述能激发你的创作灵感!如果有其他问题,欢迎随时提问~

画几张图

profile
Qwen2.5-Max
很遗憾,我目前无法直接生成或绘制图像。不过,我可以为你提供一些具体的指导和建议,帮助你自己绘制“硅谷娇妻”的形象,或者通过其他工具(如AI绘图软件、插画程序)来实现你的想法。

如果你希望使用AI绘图工具(例如MidJourney、DALL·E或Stable Diffusion),可以尝试输入以下提示词(prompts)来生成图像:

提示词1:科技精英型
Prompt :
“A confident and stylish woman in her 30s, wearing a tailored blazer and high heels, holding a smartphone with a Tesla car in the background. Modern office setting with glass walls, clean design, professional look, vibrant colors, photorealistic style.”

提示词2:创业先锋型
Prompt :
“A young female entrepreneur in casual chic attire, sitting at a trendy industrial-style coffee shop, working on a laptop, surrounded by business plans and a cup of cold brew coffee. Warm lighting, natural textures, relaxed yet determined expression, cinematic composition.”

提示词3:家庭主妇型
Prompt :
“Elegant woman in her late 30s, dressed in a luxurious dress, wearing pearl earrings, standing in a beautiful garden with roses and green lawns. A luxury mansion in the background, smiling gently while interacting with children, soft pastel tones, realistic painting style.”

提示词4:健身达人型
Prompt :
“Fit and energetic woman in athletic wear, running on a scenic trail in Silicon Valley, wearing a baseball cap and fitness tracker, early morning sunlight casting golden hues, distant view of the Golden Gate Bridge, dynamic pose, vibrant and healthy aesthetic.”

如果你想自己手绘:
构图设计 :先确定人物的姿态和背景环境,比如站立、坐着还是运动中的动态。
服装细节 :根据不同的类型选择合适的服饰,注意体现硅谷的现代感和科技氛围。
色彩搭配 :使用明亮、干净的色调,例如白色、灰色、蓝色等,突出简洁高级的感觉。
表情刻画 :根据不同角色的性格特点,描绘出自信、专注、温柔或活力的表情。
如果你有绘画基础,可以参考上述描述一步步完成作品!如果需要进一步的帮助,请随时告诉我,我会尽力为你提供建议~

ChatGPT 可以拿来做什么?

ChatGPT 通用人工智能

Grok 3

本文一共 4277 个汉字, 你数一下对不对.
硅谷娇妻是怎么样的? 让四个大语言模型AI来告诉你. (AMP 移动加速版本)

扫描二维码,分享本文到微信朋友圈
75a5a60b9cac61e5c8c71a96e17f2d9c 硅谷娇妻是怎么样的? 让四个大语言模型AI来告诉你 AIGC-图片 ChatGPT (OpenAI) Claude DeepSeek Google Gemini Grok (X.AI) 人工智能 (AI)
The post 硅谷娇妻是怎么样的? 让四个大语言模型AI来告诉你 first appeared on 小赖子的英国生活和资讯.

相关文章:

  1. 智能手机 HTC One M9 使用测评 虽然我对手机要求不高, 远远没有像追求VPS服务器一样, 但是怎么算来两年内换了四个手机, 先是三星 S4 用了一年多, 然后 Nokia Lumia 635 Windows Phone, 后来又是 BLU, 半年多前换了...
  2. 锅中的爱马仕: 法国锅 Le Creuset 今年黑五,媳妇入了三个锅,打折后,一个锅平均200英镑。我第一次才知道法国锅 Le Creuset这个牌子,感觉一个锅搞得这么贵多多少少有点噱头,就和名牌包包一样。 这个锅这么贵,得弄个开光仪式。据说最好不要放在洗碗机里,因为可能把锅的那层保护膜搞坏。 Le Creuset 是一家源自法国的高端厨具品牌,创立于1925年,以其优质的铸铁锅和搪瓷锅闻名于世。品牌的诞生地位于法国北部的小镇 Fresnoy-le-Grand,由两位比利时企业家创立。Le Creuset 的首款产品是一只标志性的橙色圆形法式炖锅,其设计灵感来源于熔融铁的颜色,这种颜色也成为品牌的象征之一。此后,Le Creuset 凭借卓越的工艺和经典设计,逐渐在全球范围内赢得了消费者的喜爱,成为许多厨房的必备之选。 Le Creuset 的产品以其铸铁材质和搪瓷涂层而著称。铸铁锅具备优异的热传导和保温性能,适合长时间炖煮、焖炖等烹饪方式,搪瓷涂层则提供了防粘效果,且易于清洁和保养。除此之外,Le...
  3. 按揭贷款(房贷,车贷) 每月还贷计算器 去年给银行借了17万英镑 买了20万7500英镑的房子, 25年还清. 前2年是定率 Fix Rate 的合同 (年利率2.49%). 每个月大概是还 700多英镑. 有很多种还贷的计算方式, 定率/每月固定 是比较常用的. 简单来说就是 每个月交的钱是...
  4. 你要找什么样的老婆? 找媳妇的标准 昨天和网友在剑桥面基, 网友奔现, 他从爱尔兰过来, 小我12岁, 就聊到了找对象的标准. TLDR; 找老婆不要(只)看颜值, 而要注重性格, 为人处事和顾家等更重要的品质, 当然性和谐也很重要. 在当今社会, 人们对于找伴侣的标准有所不同. 有些人认为颜值是最重要的, 因为外貌吸引力可以让人在日常生活中感到愉悦, 这是人的本性,...
  5. 送值400 英镑的Google Adwords广告代金券 很久之前, 我用过 Google AdWords, 当时也是拿着免费送的 Credit, 但由于某些原因, 就没继续再用下去. 这次谷歌又发邮件送了400英镑的广告点券/代金券, 如果您想要获得 400 英镑的 Google AdWords 信用额度试用这个Google...
  6. 密码或IP地址保护 WordPress 博客的 wp-admin 目录(并且允许 admin-ajax.php) wp-admin 文件夹是 wordpress 安装中最重要的文件夹. 它主要包含控制仪表板 Dashboard 等代码. 有一个重要的文件 admin-ajax.php 在正常的博客功能中也需要被用到, 所以单纯的屏蔽整个 wp-admin 也许会损坏一些正常的功能. 最近几天, 我收到了一些邮件警报,...
  7. 单反照片拍出来模糊的几个原因 单反照片拍模糊的原因可能包括以下几种:首先是对焦问题,比如对焦点没有对准主体或使用了错误的对焦模式。其次是快门速度太慢,导致拍摄时手抖或被拍摄对象移动,出现运动模糊。此外,镜头或者传感器可能有污渍,影响画质。最后,如果光圈过大(如F1.4、F1.8),景深太浅也可能导致部分画面失焦。解决这些问题,可以检查对焦设置,合理调整快门速度、光圈大小,并保持镜头和相机的清洁。 经常单反照出来的照片是糊的, 还好现在电子技术很强大 可以照很多张 糊的就删掉就可以, 不会增加照片处理的成本 (不用洗出来 再挑). 一般来说 单反照出来糊的有几个原因: 快门速度过慢 slow shutter speed 单反的安全速度是焦距的倒数,...
  8. ChatGPT-4 使用 Math Wolfram 插件解决数学脑筋急转弯问题 这篇文章, 我们看一个简单的数学问题(脑筋急转弯), 并用 Python 解决它. 我们看一下LLM(大型语言模型): ChatGPT3.5和ChatGPT4. 通过 ChatGPT-Plus 订阅(目前每月 20 美元 + VAT增值税), 我们可以启用...
  •  

部署和运行 DeepSeek R1-8b 大型语言模型 (LLM) 的两个简单命令


视频:油管/Youtube | B站/小破站 | 微博视频 | 西瓜视频 | 微信视频号 | X/推特 | 小红书

大型语言模型(LLMs)如 DeepSeek R1-8B 正在革新自然语言处理,使强大的 AI 驱动应用成为可能。然而,设置这些模型往往是一项艰巨的任务,需要复杂的配置。幸运的是,仅需两条简单的命令,您就可以使用 Ollama 在本地系统上轻松部署和运行 DeepSeek R1-8B——Ollama 是一个用于管理和运行开源 LLMs 的简化工具。

步骤 1:安装 Ollama

Ollama 让在本地运行大型语言模型变得更加简单。要安装它,请运行以下命令:

sudo apt install curl -y
curl -fsSL https://ollama.com/install.sh | sh

此命令执行以下操作:

  • 安装 curl,一个用于从互联网下载文件的命令行工具(如果本地没有安装的话)。
  • 下载并执行 Ollama 安装脚本,设置运行 LLMs 所需的一切。

步骤 2:运行 DeepSeek R1-8B

安装 Ollama 后,您可以立即运行 DeepSeek R1-8B 模型:

ollama run deepseek-r1:8b

此命令:

  • 从 Ollama 的存储库拉取 DeepSeek R1-8B 模型(如果尚未下载)。
  • 启动模型,使您可以通过命令行与其交互。

您还可以把deepseek-r1:8b换成llama3.2等,具体看模型列表

为什么使用 Ollama?

  • 易于使用:无需复杂的 Docker 设置或环境配置。
  • 本地推理优化:Ollama 旨在高效地在消费级硬件上运行。
  • 快速设置:整个过程仅需几分钟,让您专注于使用模型,而非配置它。

Ollama 是一个功能强大且用户友好的工具,专为在本地运行和管理开源大型语言模型(LLMs)而设计。它通过消除复杂的配置需求,简化了部署过程,使 AI 模型更易于开发者、研究人员和爱好者使用。借助 Ollama,用户只需使用简单的命令即可轻松下载、运行并与各种 LLMs 交互,确保流畅高效的使用体验。Ollama 针对本地推理进行了优化,能够在消费级硬件上高效运行,使用户无需依赖云端解决方案即可利用先进 AI 模型的强大能力。

结论

部署和运行像 DeepSeek R1-8B 这样的高级 LLM 并不复杂。只需两条简单的命令,您就可以在本地计算机上运行一个强大的 AI 模型。无论您是开发者、研究人员还是 AI 爱好者,这种简化的设置都让 LLMs 的实验变得更加轻松。

立即尝试,体验 DeepSeek R1-8B 的强大功能!

大语言模型 LLM = Large Language Model

英文:Two Simple Commands to Deploy and Run the DeepSeek R1-8b Large Language Model (LLM)

本文一共 714 个汉字, 你数一下对不对.
部署和运行 DeepSeek R1-8b 大型语言模型 (LLM) 的两个简单命令. (AMP 移动加速版本)

扫描二维码,分享本文到微信朋友圈
75a5a60b9cac61e5c8c71a96e17f2d9c 部署和运行 DeepSeek R1-8b 大型语言模型 (LLM) 的两个简单命令 DeepSeek 人工智能 (AI) 技术 教育 程序员 计算机 计算机
The post 部署和运行 DeepSeek R1-8b 大型语言模型 (LLM) 的两个简单命令 first appeared on 小赖子的英国生活和资讯.

相关文章:

  1. 按揭贷款(房贷,车贷) 每月还贷计算器 去年给银行借了17万英镑 买了20万7500英镑的房子, 25年还清. 前2年是定率 Fix Rate 的合同 (年利率2.49%). 每个月大概是还 700多英镑. 有很多种还贷的计算方式, 定率/每月固定 是比较常用的. 简单来说就是 每个月交的钱是...
  2. 智能手机 HTC One M9 使用测评 虽然我对手机要求不高, 远远没有像追求VPS服务器一样, 但是怎么算来两年内换了四个手机, 先是三星 S4 用了一年多, 然后 Nokia Lumia 635 Windows Phone, 后来又是 BLU, 半年多前换了...
  3. 力扣刷题获得一件衣服奖励(Leetcode DCC Winner) 我每天都在力扣上刷题。力扣有国服和美服,我两边都会打卡。每天打卡可以获得积分,而积分可以兑换各种礼物,比如T恤、卫衣、水壶,甚至可以用来抵扣一个月的会员费用。 我从2018年8月开始刷题找工作(当时去伦敦面试亚马逊),从那时起每年都会续费会员,费用是159美元,相当于每月13.25美元。我觉得这是对自己最值得的投资。买了力扣会员,就会有动力刷题、思考,通过不断练习让自己熟能生巧,保持一定的竞争力。 到目前为止,我已经用积分兑换了7-8件力扣的衣服,其中有2-3件是卫衣。国内的礼物我都寄到姐姐家。 前不久,我收到了力扣的邮件,说我获得了DCC奖励。我也不知道为什么会获得这个奖,随手回了邮件。没多久,就收到了一件新版的力扣衬衫。 英文:Leetcode DCC Winner T-shirt 本文一共 291 个汉字, 你数一下对不对. 力扣刷题获得一件衣服奖励(Leetcode DCC Winner)....
  4. 同一台服务器上多个WORDPRESS站点的一些设置可以移出去 我自从把所有网站都挪到一处VPS服务器上 就发现很多事情省事很多 可以同时管理多个网站 包括 WORDPRESS博客. 比如我有四个WORDPRESS博客 然后我就把通用的一些资料给移出去 移到 HTTP或者HTTPS都不能直接访问的文件夹里这样就更安全许多. 文件 wp-conn.php 存储了 相同的数据库资料. 1 2...
  5. 老婆的配偶签证被拒 郁闷死了, 601镑签证费打水漂,一去不回!费钱费力. 去年12月份我请了律师拿到了永居.老婆是T1G签证的陪工签 (DEPENDENT VISA) 2016年4月份到期. 然后我就想说得趁早把她的签证转成配偶签(SPOUSE)这样她就可以尽快走五年永居的路线. 今天收到拒签信,原因是我没有提供 有工资进帐的那份银行帐单,我提供了我和我老婆的联名帐户, 但是工资并不是直接打到这个帐单上的.所以就这一点被拒了.完全不给解释,不给补材料的机会.601镑就这样再见了. 英国的签证寄出之后是先由另一个部门先收费, 收完费才正式审理,而且不管结果如何是不退钱的.后悔没让律师弄,也不至于到现在浪费这么多时间和金钱,签证还没过.由于原签证还没到期,所以还不能上述.估计只能等搬完家后年底请律师搞定这事. 真是郁闷, 600镑, 我可以再买一个IPHONE6,或者给我的新买的车换四个轮胎....
  6. 公司给配了台高配DELL笔记本 早上例会结束的时候我顺便说了一句 我的笔记本有点慢, 当时我并不知道我的经理远程用电话也参加会议了(他全程在听), senior staff SE 对着电话说, “peter, you hear that? btw, my disks are...
  7. 花钱让人换汽车钥匙的电池真是个智商税 今天想不到我这么聪明的人也被人狠狠的收了一把智商税. 今天被收智商税了, 去 Tesco 换车钥匙的电池. . 才发现如此的简单, 那人直接2分钟搞定2个, 然后收了我25英镑. . 服了. . 我还以为很复杂…… 网友说 “1....
  8. 优化设计 个人主页 并且 PageSpeed Insights 双项 100分 坛子的个人主页 www.tanzhijun.com 不错 很适合个人主页的模板. 而且是手机友好. 于是我照着把 我的主页改了改. https://steakovercooked.com 并且做了几点修改: 0. 使用 google mod_pagespeed 把 JS,...
  •  

归纳法对世界的改造

✇落园
作者Liyun

从简单的统计模型,到后面的计量经济学,到机器学习,到现在的人工智能,过去的二十年是归纳法大发展的二十年。为什么只看二十年呢,因为二十年前的园主不知世事,超出认知范围之外了。

经济学在大规模应用计量经济学之前,一直是和物理学神似的,也被叫做社会科学中的物理学。而计量经济学的发展与突破也不是纯属巧合,主要是大规模经济金融数据的爆发。

早期的计量经济学,无论是宏观还是微观,其实都还是有深深的“结构化”的影子,就是需要一个结构化的模型来解释为什么会这样,有一堆变量和与之相对的系数,然后再用数据来估计系数。现在回头看,这个时期的计量经济学还是停留在一个“辅助”的阶段,数据的价值只是帮助计算系数。

然后计量经济学就向着弱结构化的方向一去不复返。可以说这是理论的发展赶不上数据的爆发,也可以说是人们渐渐失去了对结构化的理论的执念。这大概等同于量子力学之于传统物理学的革命,人们开始接受这个结构的模糊化。可就算是在这个阶段,人们的执念还是“因果关系”,直到今日计量经济学还是把因果推断作为其存在的哲学本源,试图从归纳法的角度倒推演绎法需要的因果关系。

然后随着机器学习的大爆发,人们从开始的“预测”和“因果推断”是两回事,到逐渐的审问自己,为什么对因果有这么强烈的执念?退一步说,到底什么是因果关系?这个时候才发现,因果关系其实在哲学上的定义也不是那么得清晰。园主在这里就不挖太深了,否则填因果这个坑就要填好久。

这些年,随着大语言模型的爆发,人工智能好像又解锁了一个新的阶段。虽然一边说着大语言就是一个预测方向无意的突破,另一边园主却看到人工智能落地层面对于结构化关系的依赖性慢慢减弱。以前我们的解决办法是对一个问题不断地细分梳理,然后逐个攻破。而现在大模型的冲击就是,我们真的有必要这样分解问题本身吗?如果深度学习模型本身可以就自动学出来一个等同于以前结构化的东西,就算我们没有办法把它明确的表达出来,哪又如何呢?

到这里,深度学习无疑是冲击到一个哲学层面的问题。当数据远远超过了理论的发展的时候,是不是演绎法的价值就远远不及归纳了?我们是像以前那样路径依赖,一定要对问题做一个外科手术一样精准的分解,还是可以容忍结构慢慢演变成一个黑盒子,给它无尽的自适应的能力,然后只需要关注结果就可以了?

这一波深度学习对于人工智能的冲击,我觉得体现到最后, 其实可能是一个去结构化的冲击。我们选择放弃对于结构关系的清晰表述,然后拥抱强化的预测能力对于世界的适应和改造。

人们对于深度学习和大模型的恐惧在于我们无法解释、进而无法控制。一旦我们适应和接受,下一步就是挖掘其无尽的潜力,实现下一轮生产力的爆发。

无论如何,我还是看好科技发展与世界进步的,就算过程中会有无尽的波折。

  •  

教娃编程之: ChatGPT写了一个Python交互程序调用x.ai的Grok大语言模型


视频:油管/Youtube | B站/小破站 | 微博视频 | 西瓜视频 | 微信视频号 | X/推特 | 小红书

马斯克的x.ai到年底有免费的25美元的credit可以使用Grok大语言模型

前不久(今年初),伊隆·马斯克/Elon Musk的X公司开源了Grok大语言模型,并且给免费提供了25美元的credit可以调用。可以在其官网x.ai注册一个帐号,申请API KEY即可,官网还贴心的的给出了调用的例子。

curl https://api.x.ai/v1/chat/completions -H "Content-Type: application/json" -H "Authorization: Bearer xai-......" -d '{
  "messages": [
    {
      "role": "system",
      "content": "You are a test assistant."
    },
    {
      "role": "user",
      "content": "Testing. Just say hi and hello world and nothing else."
    }
  ],
  "model": "grok-beta",
  "stream": false,
  "temperature": 0
}'

孩子们由于未成年,所以无法申请ChatGPT、X AI等大语言模式的帐号,平时他们只能在免费的微软冰/BING搜索引擎上使用集成的免费Copilot。不过今天听弟弟说,ChatGPT现在已经不需要登陆就可以使用,不过他说这个版本有点受限制。

平均长度来算的话,一句话的Prompt大概是0.0012美元。当然越长的句子花费越贵,毕竟价格是按Token来算的。可以粗略的估计一个单词是一个Token。

x.ai-usage 教娃编程之: ChatGPT写了一个Python交互程序调用x.ai的Grok大语言模型 ChatGPT (OpenAI) Grok (X.AI) Python 人工智能 (AI) 折腾 教娃 教程 教育 程序员 程序设计

目测每条Prompt的费用是0.0012美元,25美元可以使用大概2万次

x.ai-free-25-credit 教娃编程之: ChatGPT写了一个Python交互程序调用x.ai的Grok大语言模型 ChatGPT (OpenAI) Grok (X.AI) Python 人工智能 (AI) 折腾 教娃 教程 教育 程序员 程序设计

每个帐号有免费的25美元API费用

x.ai-dashboard 教娃编程之: ChatGPT写了一个Python交互程序调用x.ai的Grok大语言模型 ChatGPT (OpenAI) Grok (X.AI) Python 人工智能 (AI) 折腾 教娃 教程 教育 程序员 程序设计

X.AI 的API网站界面

x.ai-api-models 教娃编程之: ChatGPT写了一个Python交互程序调用x.ai的Grok大语言模型 ChatGPT (OpenAI) Grok (X.AI) Python 人工智能 (AI) 折腾 教娃 教程 教育 程序员 程序设计

API 的 X AI 模型:grok-beta 和 grok-vision-beta

grok-x-ai-api-keys 教娃编程之: ChatGPT写了一个Python交互程序调用x.ai的Grok大语言模型 ChatGPT (OpenAI) Grok (X.AI) Python 人工智能 (AI) 折腾 教娃 教程 教育 程序员 程序设计

由 X AI 为 Grok LLM 创建 API 密钥。 Create API Keys for Grok LLM by X AI.

ChatGPT写了一个Python交互程序调用x.ai的Grok大语言模型

反正是免费的25美元,于是想着给娃做一个简单的PYTHON程序,然后人机交互,每次调用x.ai的Grok大语言模式,也正好让娃学一学实际的编程应用。于是让ChatGPT写了个程序,这种简单的程序ChatGPT基本上是Bug Free,生成的代码拿来就能用。

import requests
import json

api_key = "x_ai ..."

# Define the API endpoint and headers
url = "https://api.x.ai/v1/chat/completions"
headers = {
    "Content-Type": "application/json",
    f"Authorization": "Bearer {api_key}",
}

# Define a system message for context
system_message = {"role": "system", "content": "You are a test assistant."}

print("Welcome to the Grok, an AI chatbot. Type 'bye' to exit.\n")

while True:
    # Prompt the user for input
    user_input = input("You: ").strip()

    # Check if the user wants to exit
    if user_input.lower() == "bye":
        print("Goodbye!")
        break

    if user_input == "":
        continue

    # Define the payload
    payload = {
        "messages": [
            system_message,
            {"role": "user", "content": user_input}
        ],
        "model": "grok-beta",
        "stream": False,
        "temperature": 0
    }

    try:
        # Make the request
        response = requests.post(url, headers=headers, json=payload)

        # Check the response status
        if response.status_code == 200:
            data = response.json()
            assistant_response = data["choices"][0]["message"]["content"]
            print(f"Grok: {assistant_response}\n")
        else:
            print(f"Error: {response.status_code} - {response.text}")
    except Exception as e:
        print(f"An error occurred: {e}")

之后 简单做了些修改,比如避免空的Prompt,并且用strip函数去除句首和句尾的空格。娃使用的是Mac苹果电脑,还得在Terminal装个Homebrew,然后安装Python,并且用 pip3 install requests 安装上请求包,就可以使用了。

x-ai-prompt-python-2024-12-01-12.53.31-scaled 教娃编程之: ChatGPT写了一个Python交互程序调用x.ai的Grok大语言模型 ChatGPT (OpenAI) Grok (X.AI) Python 人工智能 (AI) 折腾 教娃 教程 教育 程序员 程序设计

虽然界面有点素,也就是个简单的终端,但是对于孩子来说已经是个很强大的软件了。

kid-plays-x-ai-grok-llm-2024-12-01-12.53.26-scaled 教娃编程之: ChatGPT写了一个Python交互程序调用x.ai的Grok大语言模型 ChatGPT (OpenAI) Grok (X.AI) Python 人工智能 (AI) 折腾 教娃 教程 教育 程序员 程序设计

弟弟在苹果电脑上成功跑起了x.ai的大语言模式 Grok

ChatGPT 可以拿来做什么?

ChatGPT 通用人工智能

英文:ChatGPT writes a Python Script to Interact with Grok LLM from x.ai (Free $25 Credit)

本文一共 743 个汉字, 你数一下对不对.
教娃编程之: ChatGPT写了一个Python交互程序调用x.ai的Grok大语言模型. (AMP 移动加速版本)

扫描二维码,分享本文到微信朋友圈
75a5a60b9cac61e5c8c71a96e17f2d9c 教娃编程之: ChatGPT写了一个Python交互程序调用x.ai的Grok大语言模型 ChatGPT (OpenAI) Grok (X.AI) Python 人工智能 (AI) 折腾 教娃 教程 教育 程序员 程序设计
The post 教娃编程之: ChatGPT写了一个Python交互程序调用x.ai的Grok大语言模型 first appeared on 小赖子的英国生活和资讯.

相关文章:

  1. HPZ800服务器主板太老不支持超过2TB的大硬盘 我家里一直用的是HPZ800服务器, 很吵, 很老, 虽然这台服务器已经有十年之久(我在EBAY上买来用了五年多了), 但是即使放到今天, 这服务器速度依旧很快, 很稳定. 由于服务器用的是ECC较验内存, 所以基本上不重启关机. HPZ800主机有两个硬核CPU – 因特志强 X5650 – 每个CPU是12核....
  2. 给孩子零花钱培养孩子正确的金钱观价值观 两个娃已经不知不觉7岁8岁了. 媳妇和我商量一下决定给孩子每人每周5英镑的零花钱(Pocket Money). 这样他们慢慢的就有自己的小积蓄备将来不时之需: 比如朋友聚会生日啥的需要准备礼物. 同时, 我们决定不再给孩子买零食(薯片啥的). 孩子一天好几餐, 晚上睡觉前还得吃零食, 我们就多买了很多水果面包, 健康的食物多吃一些总不是啥坏事. 孩子可以用这些零钱买自己想要的东西, 我们也不再过问. 孩子有自己的决定权. 第一周的时候,...
  3. 测测你的幸运 – Linux Fortune-Teller LINUX 下有很好很好玩的命令,之前已经介绍过: figlet, rig, curl. 现在推荐另一个 命令 fortune 是用来随机显示一段(句)话的.fortune 在英文里就是幸运的意思. 这个命令可以不需要 参数 如果没有 可以通过 apt-get...
  4. 负电价活久见: 安装Octopus智能电表省电费甚至赚钱 前几周我的电气公司 Octopus 终于来装智能电表了(Smart Meter),虽然是免费安装的,但是排队排了有两三年了吧。因为之前一直写邮件催的时候就老是说 Not Ready。 收到邮件说可以安装智能电表我还是相当开心和期待的,因为已经听说这玩意好,但是还是得亲身体验一下。工程师来安装大概不到2小时,其中需要停电闸一会儿,重新接下线。装好后,给了个小册子,自动切换到了 Agile 的电价,也就是每半小时的电价都不一样,提前一天可以在手机App和网站上查得。 正好在原来的电价计费合同快要结束前2天换到了智能电表计价 Octopus Agile方式,但是系统还是扣了我75英镑 Exit Fee (提前合同结束得交违约费),不过我一个电话打过去,公司很爽快就给我退了。...
  5. 按揭贷款(房贷,车贷) 每月还贷计算器 去年给银行借了17万英镑 买了20万7500英镑的房子, 25年还清. 前2年是定率 Fix Rate 的合同 (年利率2.49%). 每个月大概是还 700多英镑. 有很多种还贷的计算方式, 定率/每月固定 是比较常用的. 简单来说就是 每个月交的钱是...
  6. 你要找什么样的老婆? 找媳妇的标准 昨天和网友在剑桥面基, 网友奔现, 他从爱尔兰过来, 小我12岁, 就聊到了找对象的标准. TLDR; 找老婆不要(只)看颜值, 而要注重性格, 为人处事和顾家等更重要的品质, 当然性和谐也很重要. 在当今社会, 人们对于找伴侣的标准有所不同. 有些人认为颜值是最重要的, 因为外貌吸引力可以让人在日常生活中感到愉悦, 这是人的本性,...
  7. 智能手机 HTC One M9 使用测评 虽然我对手机要求不高, 远远没有像追求VPS服务器一样, 但是怎么算来两年内换了四个手机, 先是三星 S4 用了一年多, 然后 Nokia Lumia 635 Windows Phone, 后来又是 BLU, 半年多前换了...
  8. 给STEEM中文微信群加了个机器人 之前说到我的公众号 justyyuk 可以查询几种虚拟货币的实时价钱, 但是有点不方便, 因为很多朋友在群里聊天得切换到公众号, 这下好了, 今天往STEEM中文微信群(还有编程群)加了个机器人, 在聊天的时候想了解价钱就直接输入货币代号即可, 如: 既方便自己, 又能方便别人(省事, 价格信息会同时显示给其它成员). 注: 这机器人不是我做的, 只是我拉进来的,...
  •  

大语言模型LLM的基本逻辑

✇落园
作者Liyun

上一篇说到我准备入个坑,结果就是最近埋头苦苦补习最基本的一些知识。随便写点东西梳理一下思路吧,这样万一我真的开始做点什么也算是一个基本素材。一些英文的名词我就不翻译了,反正现在大家英语都挺好的。

先来一些可以基本望文生义的名词解释。LLM=large language model = 大语言模型。这简直是个不能再俗的名字了。GPT = generative pre-trained transformer ,也是够直白的。

再来个极其简单的(受限于园主阅历)历史回顾。自然语言处理基本上经历了 word2vec, RNN,然后就是现在的transformer了。其实说到底,自然语言处理的基本问题就是一个时间序列问题。当园主意识到这点的时候也是惊掉了下巴,什么,计量里面的时间序列不是Autoregression, moving average,stationary 那些东西么,怎么看都跟自然语言扯不上关系了。后面看到做量化的人都在跟这个方向的进展,才明白说到底都是时间序列嘛。想想也是,自然语言就是一个把词按照特定顺序排列起来的数据,词与词之间的关联和顺序最终表达了一定的意义。

nlp模型想法差不多,就是基于已经有的词,预测对应的下一个词的概率。建模不是问题,但数据上来后计算是问题啊……于是有了transformer 那篇著名的 Attention is all you need,伴随着经典的encoder-decoder结构,就出现了让图灵测试不再是问题的大语言模型们。

再来一轮名词解释。自然语言到建模之前,需要先把unstructured data转换为可以计算的数字,这就是embedding 这一步,也叫token 化。然后再怎么办呢?transformer的核心是再算一下attention 矩阵,这个矩阵主要涵盖了词与词之间关联程度(不贴公式了),然后要做的就是放到神经网络里面去算了。这里有意思的是,encoder里面不只有一个基于attention数据的模型,而是多个,所以称之为 multi-head attention (多头注意力)。为啥需要多个模型呢,因为神经网络很有名的一个feature(bug)是local optima,即随着初始值的不同,参数可能会迭代到一个局部最优。至于全局最优嘛,存不存在都还是个迷。反映到encoder这里,有意思的是每个单独的模型就有可能抓住语言的某一个层面的特征,比如语法,比如逻辑,比如修辞,比如情绪,以及一些语义学还无法解释的神秘模型。但不要紧,大力出奇迹,只要计算机能算得出来就行。

encoder到这里已经可以做很多任务了,最显著的大概是sentiment analysis, 就是判断里面的情绪。比如一个评价是正面负面,或者是关于价格还是物流速度,等等。这些分类模型对于很多应用场景都是很有价值的信息提取过程,也称为auto-encoding。

decoder呢,任务就更直接,就是通过输入的新数据来预测并生成下文。这也是GPT的厉害之处,可以自己写小作文了。所以这一类也叫autoregressive model ,即AR!再看下去,其实decoder的架构和encoder很像,所以他们的并不是模型架构本身,而是任务的目标不同。

那什么时候我们会同时需要encoder和decoder呢?典型的例子就是两种语言之间的翻译。大概的数学任务就是,给定前后的词,来猜中间缺失的词是什么。这一类就是sequence to sequence 模型了。至于模型的评价,现有Rouge, Bleu等指标(怎么都是法语里的颜色……)。

好了,现在我们有一个transformer模型了,就可以高枕无忧了么?当然不是,下一阶段就是,fine-tuning 或者更准确的说,instruction fine tuning。

这一步,说到底就是让模型理解人们的意图。比如,我想让ChatGPT给我写代码,那我就会先给一个指令,help me write a code in python,这样它才可以理解我要的是代码而不是一个翻译任务。这类对于指定任务类型的 instruction 的训练,不仅仅在于理解目的,还牵扯到对于不同类型任务的参数细调。最简单粗暴的,我们可以要求对某一类型任务完全刷新所有参数,即full fine tuning,也可以省点资源,来只训练部分参数,即parameter efficient fine tuning PEFT。近期还有比较有意思的LoRa方法,在原来的参数矩阵外额外训练两个rank小很多的矩阵,最后再把新的两个小矩阵的乘起来,加到原始的参数矩阵上。甚至我们可以对instruct 的数据单独做一个小模型单独训练,然后在embedding 那一步把数据预处理后再喂给encoder or decoder。

fine tuning之后,理论上llm模型已经有了不错的预测能力了,但还需要一步alignment,即通过reinforcement learning 来进一步训练模型给出更符合人们需求的回答,比如 HHS (helpful, honest, harmless)。这一步主要是利用额外的人为标记的数据,比如对于多个候选答案之间的排序等等。当然,我们还可以搞个单独用来打分的模型给GPT的答案打分,哈哈,让机器自动自我修正。

这一些做完,基本上就是chatGPT 的雏形了。然后我们发现,不够,远远不够,一个AGI不能只有对话功能。下一步显然就是多模态Multimodality,即文字语音图像视频等等形式的结合。到这里,我们大概可以窥见这是一种“搭积木”的挑战了,即每一块儿自己的AI模型要和其他领域的结合起来,互通有无。

再来一组名词解释。Langchain,主要想法是各领域最后都转化为一个文本语言问题,然后互通有无。RAG (retrieval augmented generation) ,主要用来引入额外的信息来补全LLM的知识储备。ReAct (Reasoning and Acting augments) 主要是理解指令并利用各种多模态的模块来执行具体任务。

——

对了,为啥么这里园主通篇不提prompt。因为,园主觉得这就是个成长过程中不成熟阶段的伪命题……过两年可能就完全嵌入大模型本身了。

——

园主这些知识大概一半是Coursera 这门Generative AI with LLM 课扫盲来的。这门课主打一个深入浅出,适合理清大模型的整体逻辑,极其适合入门。剩下一半就是读各类的新闻和paper,还有各种视频。只能说,互联网时代,知识本身触手可及,考验的是系统学习的鉴别能力。

——

这篇本来是想写个提纲然后扔给GPT帮我完成的,结果最后还是老老实实的手动敲完了。哎,下次试试能不能用GPT写的更好一些。

  •